Development and characterization dual responsive magnetic nanocomposites for targeted drug delivery systems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Doxorubicin loaded dual pH- and thermo-responsive magnetic nanocarrier for combined magnetic hyperthermia and targeted controlled drug delivery applications.

Magnetic nanocarriers have attracted increasing attention for multimodal cancer therapy due to the possibility to deliver heat and drugs locally. The present study reports the development of magnetic nanocomposites (MNCs) made of an iron oxide core and a pH- and thermo-responsive polymer shell, that can be used as both hyperthermic agent and drug carrier. The conjugation of anticancer drug doxo...

متن کامل

Photo and Redox Dual Responsive Reversibly Cross-Linked Nanocarrier for Efficient Tumor-Targeted Drug Delivery

To develop a feasible and efficient nanocarrier for potential clinical application, a series of photo and redox dual responsive reversibly cross-linked micelles have been developed for the targeted anticancer drug delivery. The nanocarrier can be cross-linked efficiently via a clean, efficient, and controllable coumarin photodimerization within the nanocarrier, which simplify the formulation pr...

متن کامل

Magnetic/pH-sensitive nanocomposite hydrogel based carboxymethyl cellulose –g- polyacrylamide/montmorillonite for colon targeted drug delivery

Objective(s): The main aim of current research was to develop a novel magnetically responsive hydrogel by radical polymerization of carboxymethyl cellulose (CMC) on acryl amide (Am) using N,N'-methylene bis acrylamide  (MBA)  as a crosslinking agent, potassium persulfate (KPS) as a free radical initiator, and  magnetic montmorillonite ( mMT)  nanoclay as nano-...

متن کامل

ROS‐responsive drug delivery systems

Reactive oxygen species (ROS) play an important role in signal transduction and metabolism. Over-produced ROS in cells or tissues, however, often leads to oxidation stress that has implications in a series of diseases including cancer, aging, atherosclerosis and inflammation. Driven by the need for on-demand drug delivery and fuelled by recent development of ROS-responsive materials and nanomed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Artificial Cells, Nanomedicine, and Biotechnology

سال: 2017

ISSN: 2169-1401,2169-141X

DOI: 10.1080/21691401.2017.1360323